341 research outputs found

    Quantum analog of channeled electron trajectories in periodic magnetic and electric fields

    Full text link
    We calculate the quantum states corresponding to the drifting and channeled classical orbits in a two-dimensional electron gas (2DEG) with strong magnetic and electric modulations along one spatial direction, xx. The channeled states carry high, concentrated currents along the yy axis, and are confined in an effective potential well. The quantum and the classical states are compared.Comment: 8 pages with 4 included ps figures, contribution to "SemiMag 13" Nijmegen, August 1998, to appear in Physica

    Human long intrinsically disordered protein regions are frequent targets of positive selection

    Get PDF
    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher-order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here we address this question by investigating the evolutionary pattern of more than 6,600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a-priori knowledge of disordered protein regions and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs 4-fold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts

    Hybrid-procedures for the Treatment of Thoracoabdominal Aortic Aneurysms and Dissections

    Get PDF
    AimThe conventional open repair of thoracoabdominal aneurysms and dissections remains complex and demanding and is associated with significant morbidity and mortality. We present our experience of hybrid open and endovascular treatment of thoracoabdominal aneurysms and dissections.MethodsWithin an experience of 226 aortic stent-grafts between 1998 and April 2006, 6 of the patients (median age 60 years, range 35 to 68 years) with thoracoabdominal aneurysms (Crawford type I, II, III, and V) were treated with a combined endovascular and open surgical approach. Five men and one woman, with median aneurysm diameter of 75mm (range 70–100mm), received revascularization of the renal arteries, the superior mesenteric artery, and the coeliac trunk accomplished via transperitoneal bypass grafting. Aneurysmal exclusion was then performed by stent-graft deployment.ResultsThe entire procedure was technically successful in all patients. The patients were discharged a median of 9 days after the operation, while the postoperative studies revealed the patency of the vessels and no evidence of type I endoleak or secondary rupture of the aneurysm. During follow up (1 to 22 months) spiral-CT scanning revealed distinct shrinkage of the aneurysm, no graft migration or endoleak and patency of all revascularised vessels, except one renal artery in two patients. No patient experienced any temporary or permanent neurological deficit, and no dialysis was necessary.ConclusionThe combined endovascular and open surgical approach is feasible, without cross clamping of the aorta and with minimized ischemia time for renal and visceral arteries, and seems to be an appropriate strategy for patients with a thoraco-abdominal aortic aneurysm or dissection

    Fluctuating selection models and Mcdonald-Kreitman type analyses

    Get PDF
    It is likely that the strength of selection acting upon a mutation varies through time due to changes in the environment. However, most population genetic theory assumes that the strength of selection remains constant. Here we investigate the consequences of fluctuating selection pressures on the quantification of adaptive evolution using McDonald-Kreitman (MK) style approaches. In agreement with previous work, we show that fluctuating selection can generate evidence of adaptive evolution even when the expected strength of selection on a mutation is zero. However, we also find that the mutations, which contribute to both polymorphism and divergence tend, on average, to be positively selected during their lifetime, under fluctuating selection models. This is because mutations that fluctuate, by chance, to positive selected values, tend to reach higher frequencies in the population than those that fluctuate towards negative values. Hence the evidence of positive adaptive evolution detected under a fluctuating selection model by MK type approaches is genuine since fixed mutations tend to be advantageous on average during their lifetime. Never-the-less we show that methods tend to underestimate the rate of adaptive evolution when selection fluctuates

    Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems

    Full text link
    We analyze the dynamics of a charged particle moving in the presence of spatially-modulated magnetic fields. From Poincare surfaces of section and Liapunov exponents for characteristic trajectories we find that the fraction of pinned and runaway quasiperiodic orbits {\em vs}. chaotic orbits depends strongly on the ratio of cyclotron radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete characterization of the dynamical behavior of such structures, and investigate the contribution to the magnetoconductivity from all different orbits using a classical Kubo formula. Although the DC conductivity of the system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology of all different orbits, and even their unusual temporal behavior.Comment: Submitted to PRB - 14 figure files - REVTEX tex

    The role of mutation rate variation and genetic diversity in the architecture of human disease

    Get PDF
    Background We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified. Results Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless. Conclusions Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease

    Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum

    Full text link
    We compare the quantum and the classical description of the two-dimensional motion of electrons subjected to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consisting of superimposed branches of strong and of weak dispersion, by the correspondence between the respective eigenstates and the ``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review

    Anisotropic scattering and quantum magnetoresistivities of a periodically modulated 2D electron gas

    Full text link
    We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approximation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experiments.Comment: 19 pages, 8 figures, Revtex, to appear in Phys. Rev.

    Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields

    Full text link
    Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To explain these experiments, we generalize the Thomas-Fermi--Poisson approach for the self-consistent calculation of electrostatic potential and electron density in {\em total} thermal equilibrium to a {\em local equilibrium} theory that allows to treat finite gradients of the electrochemical potential as driving forces of currents in the presence of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer values of the (local) Landau-level filling factor shows that, in apparent agreement with experiment, the current density is localized near incompressible strips, whose location and width in turn depend on the applied current.Comment: 9 pages, 7 figure
    • …
    corecore